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Abstract. In this paper, we examine several localization algorithms and evaluate
their robustness to attacks where an adversary attenuates or amplifi@g-the
nal strength at one or more landmarks. We propose several penfice metrics
that quantify the estimator’s precision and error, including Hélder metrib&h
quantify the variability in position space for a given variability in signal stteng
space. We then conduct a trace-driven evaluation of several pasetand area-
based algorithms, where we measured their performance as we agipéiekls
on real data from two different buildings. We found the median errgratied
gracefully, with a linear response as a function of the attack strength.|8te a
found that area-based algorithms experienced a decrease arithhdpt in the
returned area under attack, implying that precision increases thouglishia
troduced for these schemes. We observed both strong experimedtilemretic
evidence that all the algorithms have similar average responses to stigmagth
attacks.

1 Introduction

Secure localization is important for distributed sens@tems because the position of
sensor nodes is a critical input for many sensor networlstaslch as tracking, monitor-
ing and geometric-based routing. However, assuring thdiabf localization results
is not straight-forward because these algorithms rely oyrsiphl measurements that
can be affected by non-cryptographic attacks. Althoughethas been recent research
on securing localization, to date there has been no studgerobustness of localiza-
tion algorithms to physical attacks. In this paper, we itigede the susceptibility of a
wide range of signal strength localization algorithms taeks on the Received Sig-
nal Strength (RSS). RSS is an attractive basis for locéizdiecause all commodity
radio technologies, such as 802.11, 802.15.4, and Blulefmavide it, and thus the
same algorithms can be applied across different platfoAiss, using RSS allows the
localization system to reuse the existing communicatidrastructure, rather than re-
quiring the additional cost needed to deploy specializedllpation infrastructure, such
as ceiling-based ultrasound, GPS, or infrared methods.



In this work, we investigate the response of several loatin algorithms to unantici-
pated power losses and gains, i.e. attenuation and amfitificattacks. In these attacks,
the attacker modifies the RSS of a sensor node or landmarkxénple, by placing
an absorbing or reflecting material around the node. Spalyfieve investigate point-
based and area-based RF fingerprinting algorithms, wherebyabase of collected RF
fingerprints are measured at several landmarks for anlieétaf locations. In order to
evaluate the robustness of these algorithms, we provideergkzed characterization
of the localization problem, and then present several paidace metrics suitable for
quantifying performance. We present a new family of metnelich we call Holder
metrics, for quantifying the susceptibility of localizai algorithms to perturbations in
signal strength readings. We use worst-case and averagevessions of the Holder
metric, which describe the maximum and average variakakitya function of changes
in the RSS. We then experimentally evaluate the performaheewide variety of lo-
calization algorithms after applying attenuation and afigglion attacks to real data
measured from two different office buildings.

Using experimentally observed localization performamee found that the error for a
wide variety of algorithms scaled with surprising simitariinder attack. The single ex-
ception was the Bayesian Networks algorithm, which degiadiewer than the others
in response to attacks against a single landmark. In additiour experimental obser-
vations, we found a similar average-case response of tleithigns using our Hélder

metrics. However, we observed that methods which returneavarage of likely posi-

tions had less variability and are thus less susceptibledttzer methods.

We also observed that all algorithms degraded gracefutlyegencing linear scaling
in localization error as a function of the amount of loss dnda dB) an attack intro-
duced. This observation applied to various statisticatdetons of the error, leading
us to conclude that no algorithm “collapses” in responsentattack. This is impor-
tant because it means that, for all the algorithms we exathere is no tipping point
at which an attacker can cause gross errors. In particuafpund the mean error of
most of the algorithms for both buildings scaled between1183ft/dB when all the
landmarks were attenuated simultaneously, and 0.5-@B fthen attenuating a single
landmark. We also showed experimentally that RSS can bly edtgnuated by 15 dB,
and that, as a general rule of thumb, very simple signal gtheattacks can lead to
localization errors of 20-30 ft.

Finally, we conducted a detailed evaluation of area-bakgatithms as this family of
algorithms return a set of potential locations for the traitier. Thus, it is possible that
these algorithms might return a set with a larger area inoespto an attack and could
have less precision (or more uncertainty) under attack.avew we found all three of
our area-based algorithms shifted the returned areag ththeincreased returned area.
Further, one of the algorithms, the Area Based Probab#iBR) scheme, significantly
shrank the size of the returned area in response to verydam®es in signal strength.

The rest of this paper is organized as follows. We first discakted work in Section 2.
Next, in Section 3 we give an overview of the algorithms usedur study and discuss
how signal strength attacks can be performed. In Sectiorefravide a formal model
of the localization problem as well as introduce the metifieg we use in this paper.



We then examine the performance of the algorithms througéxperimental study in
Section 5, and discuss the Holder metrics for these algositin Section 6. Finally, we
conclude in Section 7.

2 Related Work

In general, localization algorithms can be categorizedasgye-based vs. range-free,
scene matching, and aggregate or singular. The range-laégadthms involve dis-
tance estimation to landmarks using the measurement afusphysical properties
like RSS [1], Time Of Arrival (TOA) [2] and Time Difference Krrival (TDOA) [3].
Rather than use precise physical property measuremenige-feee algorithms use
coarser metrics like connectivity [4] or hop-counts [5] emdimarks to place bounds
on candidate positions. In scene matching approachesjameg of the environment
is constructed, either by measuring actual samples, ugmglspropagation models,
or some combination of the two. A node then measures a setlif paoperties (of-
ten just the RSS of a set of landmarks), firegerprint and attempts to match these
to known location(s) on the radio map. These approachesla@stalways used in
indoor environments because signal propagation is extelgsaffected by reflection,
diffraction and scattering, and thus ranging or simpleadise bounds cannot be effec-
tively employed. Matching fingerprints to locations can hetdn statistical terms [6, 7],
as a machine-learning classifier problem [8], or as a clusgtgrroblem [9]. Finally, a
third dimension of classification extends to aggregate mgidar algorithms. Aggre-
gate approaches use collections of many nodes in the networkler to localize (of-
ten by flooding), while localization of a node in singular hmeds only requires it to
communicate to a few landmarks. For example, algorithmsgusptimization [10] or
multidimensional scaling [4] require many estimates betweodes.

Recently, it has been recognized that there are many ngiegraphic attacks that can
affect localization performance. For example, wormholackts tunnel through a faster
channel to shorten the observed distance between two nbtlejompromised nodes
may delay response messages to disrupt distance estinjafiband compromised
landmarks may even broadcast completely invalid inforamafil3]. Physical barriers
can directly distort the physical property used by locaita [12] provided a thorough
survey of potential attacks to various localization altforis based on their underlying
physical properties.

Secure localization algorithms have been proposed to aslthiese attacks. [14] uses a
distance bounding protocol [15, 16] to upperbound the distdbetween two nodes. Lo-
cation estimation (via multilateration) with distancesfrthe bounding protocol can be
verified against these bounds and any inconsistency will ilngicate attack. [17] uses
hidden and mobile base stations to localize and verify lonastimate. Since such base
station locations are hard for attackers to infer, it is Harthunch an attack, thereby
providing extra security. [18] uses both directional anteand distance bounding to
achieve security. Compared to all these methods, which @miptation verification
and discard location estimate that indicates under atfa8kand [12] try to eliminate



the effect of attack and still provide good localizatior2]inakes use of the data redun-
dancy and robust statistical methods to achieve relialdglilmation in the presence of

attacks. [13] proposes to detect attacks based on datasiistemcy from received bea-

cons and to use a greedy search or voting algorithm to elisith@ malicious beacon

information.

In our work, we focus only on fingerprinting algorithms thaeurRSS, and provide an
investigation into the feasibility of signal strength atta as well as the susceptibility
of fingerprinting algorithms to such attacks. Of previousrkyanly [12] proposed a
possible solution to the fingerprint-based localizatian,the susceptibility of different
fingerprinting methods was not completely investigated.

3 Algorithms and Signal Strength Attacks

In this paper we are only concerned with localization aliyons that employ signal
strength measurements. There are several ways to classilization schemes that
use signal strength: range-based schemes, which expliovtblve the calculation of

distances to landmarks; and RF fingerprinting schemes Wwhexaadio map is con-

structed using prior measurements, and a device is lodaligeeferencing this radio
map. For this study, we focus on indoor localization scheraed therefore we restrict
our attention to RF fingerprinting methods, which have hadensuccess for indoor
environments. RF fingerprinting methods can be further émottown into two main

categories: point-based methods, and area-based methods.

Point-based methods return an estimated point as a lotafizasult. A primary exam-
ple of a point-based method is the RADAR scheme [9]. Vanetiof RADAR, such as
Averaged RADAR and Gridded RADAR have been proposed in [@]the other hand,
area-based algorithms returmest likelyarea in which the true location resides. Two
examples of area-based localization algorithms are tha Besed Probability (ABP)
method [19] and the Bayesian Networks method [20]. One ofntlagor advantages
of area-based methods compared to point-based methodst ihély return a region,
which has an increased chance of capturing the transritteie location.

For this paper, we have selected a representative set aftalgs from each class of RF
fingerprinting schemes for conducting our analysis. Theritlyms we have selected are
presented in Table 1. Although there are a variety of othgefiprinting localization
algorithms that may be studied, our results are general andoe applied to other
point-based and area-based methods. More details for gigsgthms can be found
in [9,19, 20].

To attack signal-strength based localization systems,daeraary must attenuate or
amplify the RSS readings. This can be done by applying tlaelatit the transmitting
device, e.g. simply placing foil around the 802.11 card;\odivecting the attack at the
landmarks. For example, we may steer the lobes and nulls afiiamna to target select
landmarks. A broad variety of attenuation attacks can bépued by introducing
materials between the landmarks and sensors [12]. We nezhthe effect of different



Table 1. Algorithms under study

[Algorithm [Abbreviation [Description |

Area-Based

Simple Point Matching SPM Maximum likelihood matching of the RSS to an area using thresHolds.

Area Based Probability ABP-a  |Bayes rule matching of the RSS to an area probabilistically bounded
by the confidence level%.

Bayesian Network BN Returns the most likely area using a Bayesian network approach

Point-Based

RADAR R1 Returns the closest record in the Euclidean distance of signal space.

Averaged RADAR R2 Returns the average of the top 2 closest records in the signal map.

Gridded RADAR GR Applies RADAR using an interpolated grid signal map.

Highest Probability P1 Applies maximum likelihood estimation to the received signal.

Averaged Highest Probability P2 Returns the average of the top 2 likelihoods.

Gridded Highest Probabilit GP Applies likelihoods to an interpolated grid signal map.

materials on the RF propagation when inserted betweenidenarks and the sensors.
Figure 1 shows the experimental results. These materialsasy to access and attacks
utilizing these kind of materials can be simply performedhwow cost. Based upon
the results in Figure 1, we see that there is a linear relgiiprbetween the unattacked
signal strength and the attacked signal strength in dB foowa materials. The linear
relationship suggests that there is an easy way for an atyeis control the effect of
his/her attack on the observed signal strength.

Signal Attenuation through Various Materials
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Fig. 1. Signal attenuation when going through a barrier

In the rest of this paper, we will use the linear attenuatiadet to describe the effect of
an attack on the RSS readings at one or more landmarks. Tligngattacked readings
are then used to study the consequent effects on localidfatiohe algorithms surveyed
above. In particular, in this study, we apply our attackswdiviidual landmarks, which
might correspond to placing a barrier directly in front ofaadmark, as well as to the
entire set of landmarks, which corresponds to placing a@dyaround the transmitting
device. Similar arguments can be made for amplificatiorckstawhereby barriers are
removed between the source and receivers. Although theraamy different and more
complex signal strength attack methods that can be usedeliev® their effects will
not vary much from the linear signal strength attack modeluse in this paper, and
note that such sophisticated attacks could involve mucherigost to perform.



4 Measuring Attack Susceptibility

The aim of a localization attack is to perturb a set of sigh@rgth readings in order
to have an effect on the localization output. When selectihecalization algorithm,

it is desirable to have a set of metrics by which we can quatitifiv susceptible a
localization algorithm is to varying levels of attack by advarsary. In this section, we
shall provide a formal specification for an attack, and pneseveral measurement tools
for quantifying the effectiveness of an attack.

4.1 A Generalized Localization Model

In order to begin, we need to specify a model that capturesatyaf RF-fingerprinting
localization algorithms. Let us suppose that we have a dorbain two-dimensions,
such as an office building, over which we wish to localize $raitters. WithinD, a set
of n landmarks have been deployed to assist in localization.rAless device that trans-
mits with a fixed power in an isotropic manner will cause a @eof n signal strength
readings to be measured by théandmarks. In practice, thesesignal strength read-
ings are averaged over a sufficiently large time window toawsrstatistical variability.
Therefore, corresponding to each locationZin there is ann-dimensional vector of
signal readings = (s1, 2, - -, s, ) that resides in a rang®.

This relationship between positions In and signal strength vectors defines a finger-
print function F : D — R that takes our real world positiofx, y) and maps it to a
signal strength readingy I’ has some important properties. First, in practi€as not
completely specified, but rather a finite set of positions y;) is used for measuring a
corresponding set of signal strength vectgrsAdditionally, the functiont” is generally
one-to-one, but is not onto. This means that the inverde igfa functionG that is not
well-defined: There are holes in thhedimensional space in whicR resides for which
there is no well-defined inverse.

It is precisely the inverse functio@, though, that allows us to perform localization.
In general, we will have a signal strength readinfpr which there is no explicit in-
verse (e.g. perhaps due to noise variability). Instead ofgus, which has a domain
restricted taR?, we consider various pseudo-inverseg, of £ for which the domain of
G4 is the completer-dimensional space. Here, the notati@p,, indicates that there
may be differenailgorithmicchoices for the pseudo-inverse. For example, we shall de-
noteGr to be the RADAR localization algorithm. In general, the ftion G,;, maps
ann-dimensional signal strength vector to a regiornFor point-based localization
algorithms, the image df,,;, is a single point corresponding to the localization result.
On the other hand, for area-based methods, the localizalgmmithmG,,;, produces a
set of likely positions.

An attack on the localization algorithm is a perturbatioritte correct:-dimensional
signal strength vectarto produce a corrupted-dimensional vectog. Corresponding
to the uncorrupted signal strength vecids a correct localization result = Ga4(s),
while the corrupted signal strength vector produces arkdtalocalization resufp =
Glaig(8). Here,p andp are set-valued and may either be a single point or a regidh in



4.2 Attack Susceptibility Metrics

We wish to quantify the effect that an attack has on locabraby relating the effect
of a change in a signal strength readigp the resulting change in the localization
resultp. We shall usey to denote the correct location of a transmitietp denote the
estimated location (set) when there is no attack being pedd, andp to denote the
position (set) returned by the estimator after an attaclkalffasted the signal strength.
There are several performance metrics that we will use:

Estimator Distance Error: An attack will cause the magnitude pfy — p to increase.
For a particular localization algorithi@¥,;, we are interested in the statistical charac-
terization of||pg — p|| over all possible locations in the building. The characegion

of ||po — P|| depends on whether a point-based method or an area-baskddnigt
used, and can be described via its mean and distributiohalviim. For a point-based
method, we may measure the cumulative distribution (cdfy@grror|po—p|| over the
entire building. For area-based methods, we repfaaghich is a set, with its median
(along ther andy dimensions separately). Thus, for area-based metricsalgalate
the CDF of the distance between the median of the estimatadidmsp,,,.q and the
true location, i.e||po — Pmedll-

The CDF provides a complete statistical specification ofdistance errors. It is often
more desirable to look at the average behavior of the ermrpbint-based methods,
the average distance error is sim@||po — p||], which is just the average dpo — p||
over all locations. Area-based methods allow for more otio defining the average
distance error. First, for a particular valuemf, p is a set of points. For eaghy,, we
get a collection of error valuel§p, — q||, asq varies over points irp. For eachpy,
we may extract the minimum, 25th percentile, median, 75thgugile, and maximum.
These quartile values difp; — q|| are then averaged over the different positipps

Estimator Precision: An area-based localization algorithm returns agsefor local-
ization, precision refers to the size of the returned eggcharea. This metric quantifies
the average value of the area of the localizedpseter different signal strength read-
ingss. Generally speaking, the smaller the size of the returned,dhe more precise
the estimation is. When an attack is conducted, it is possiitaiethe precision of the
answelp is affected.

Precision vs. Perturbation DistanceThe perturbation distance is the quantity,,cq—
DPmeall- The precision vs. perturbation distance metric depiotsftimctional depen-
dency between precision and increased perturbation distan

Hoélder Metrics: In addition to error performance, we are interested in hoandit-
ically the returned results can be perturbed by an attacls,TWwe wish to relate the
magnitude of the perturbatidfs — §|| to its effect on the localization result, which is
measured by G, (s) — Gaig(8)]. In order to quantify the effect that a change in the
signal strength space has on the position space, we borrogaaure from functional
analysis [21], called the Hoélder parameter (also known ed.thschitz parameter) for
Gaig. The Holder parametdt ;4 is defined via

||Galg(s) - Garlg(v)”
[s — v

Hyg = max



For continuoug~,,;4, the Holder parameter measures the maximum (or worst-case)
of variability in position space for a given variability ilggal strength space. Since the
traditional Holder parameter describes the worst-casce#in attack might have, it
is natural to also provide an average-case measurementatfaak, and therefore we
introduce the average-case Holder parameter

- Gaig(s) — Gaig (V)|
Mty =2V : Is — v : .

These parameters are only defined for continuous functigns and many localization
algorithms are not continuous. For example, if we lookzat for RADAR, the result
of varying a signal strength reading is that it will yielgtir-stepbehavior in position
space, i.e. small changes will map to the same output andstideenly, as we continue
changing the signal strength vector, there will be a chaogeriew position estimate
(we have switched over to a new Voronoi cell in signal spaleejeality, this behav-
ior does not concern us too much, as we are merely concerrtbduwvether adjacent
Voronoi cells map to close positions. We will revisit thisug in Section 6. Finally, we
emphasize that Hélder metrics measure the perturbabilitieoreturned results, and
do not directly measure error.

5 Experimental Results

In this section we present our experimental results. Wedgstribe our experimental
method. Next, we examine the impact of attacks on the RSS#ditation error when
attacking all landmarks simultaneously as well as singletinark attacks. We then
guantify the algorithms’ linear responses to RSS changeallf;, we present a preci-
sion study that investigates the impact of attacks on themetl areas for area-based
algorithms.

5.1 Experimental Setup

Figure 2 shows our experimental set up. The floor map on theg#fis the 3rd floor of
the CoRE building at Rutgers, which houses the computenseidepartment and has
an area of 200x80ft (1600£¢?). The other floor shown in (b) is an industrial research
laboratory (we call the Industrial Lab), which has an are22Bx144ft (32400ft2).
The stars are the training points, the small dots are teptings, and the larger squares
are the landmarks, which are 802.11 access points. Notitett 4 CoRE landmarks
are more co-linear than the 5 landmarks in the Industrial Lab

For both attenuation and amplification attacks, we ran therdhms but modified the
RSS of the testing points. We altered the RSS by +/-5 dB to5+dB, in increments
of 5 dB. We experimented with different ways to handle sigriaht would fall below
the detectable threshold of -92 dBm for our cards. We fouatighbstituting the mini-
mal signal (-92 dBm) produced about the same localizatisnlte and did not require
changing the algorithms to special case missing data.
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Fig. 2. Deployment of landmarks and training locations on the experimentakfloor

We experimented different training set sizes, includingld®, 225, 253 and 286 points.
Although there are some small differences, we found thabéavior of the algorithms

matches previous results and varied little after using taiing points, and we thus
used a training set size of 115 for this study.

5.2 Localization Error Analysis

In this section, we analyze the estimator distance erroutyin the statistical character-
ization of |po — p|| by presenting the error CDFs of all the algorithms as a fonotif
attenuation and amplification attacks. The CDF providesnaptete statistical specifi-
cation of the distance errors.

Figure 3(a) shows the normal performance of the algorittonte CoRE building and
(e) shows the results for the Industrial Lab. For the aretalgorithms, the median
tile error is presented, as well as the minimum and maximieretirors for ABP-75.
As in previous work, the algorithms all obtain similar perfance, with the exception
of BN which slightly under-performs the other algorithms.

Figures 3(b) and 3(c) show the error CDFs under simultanmdimark attenuation
attacks of 10 and 25 dB for CoRE, respectively, while Figuif® &1d 3(g) show the
similar results in the industrial lab. First, bulk of the ees shift to the right by roughly
equal amounts: no algorithm is qualitatively more robusntthe others. Comparing
the two buildings, the results show that the industrial lelors are slightly higher for
attacks at equal dB, but again, qualitatively the impachefluilding environment is
not very significant.

Figures 3(d) and 3(h) show the error CDFs for the CoRE andsimidl Lab under
a 10 dB amplification attack. The results are qualitativeisnsetric with respect to
the outcome of the 10 dB attenuation attack. We found thageimeral, comparing
amplifications to attenuations of equal dB, the errors weiditatively the same.



Fig. 3.Error CDF across localization algorithms when attacks are performali e landmarks.
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An interesting feature is that the minimum error for APB-T&oashifts to the right by

roughly the same amount as the other curves. Figures 3(a}@)dhow that, in the
non-attacked case, the minimum tile error for ABP-75 isesinhall, meaning that the
localized node is almost always within or very close to thiimeed area. However,
under attacks, the closest part of the returned area moveg fa@m the true location

at the same rate as the median tile. We observed similarteffecthe SPM and BN

algorithms.

Next, we examine attacks against a single landmark. We fattagks against certain
landmarks had a much higher impact than against others iICtfRE building. Fig-
ure 4(a) and 4(b) show the difference in the error CDF by caingaattacks of land-
marks 1 and 2. Figure 2(a) shows that landmark 1 is at the souénd of the building,
while landmark 2 is in the center and is close to landmark 4 fHil of the curves in
Figure 4(a) are much worse than for 4(b), showing that whetirtaark 1 is attacked sig-
nificantly more high errors are returned. we observed a aimaiffect for amplification
attacks.
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Fig. 4. Error CDF across localization algorithms when attacks are performexhandividual
landmark. The attack is 25dB of signal attenuation.

The Industrial Lab results in Figures 4(c) and (d) show meds Isensitivity to land-
mark placement compared to the CoRE building. Figure 2(byvshthat landmark 5
is centrally located and we initially suspected this wowdgduit in attack sensitivity.
However, the error CDFs show that the remaining 4 landmantegige sufficient cov-
erage: as landmark 5 is attacked, the error CDFs are not niffetedt from attacking
landmark 4.



5.3 Linear Response

In this section, we show that the average distance eEfp, — p||], of all the al-
gorithms scales in a linear way to attacks: the localizadionr changes linearly with
respect to the amount of signal strength change in dB (r&é¢sih log-scaled change in
power).

Figure 5 plots the median error vs. RSS attenuation for $anabus landmark attacks
in Figure 5(a) and 5(d), and for individual landmarks in thikeo figures. Points are
measured data, and the lines are linear least-squareshfésndst important feature is
that, in all cases, the median responses of all the algasifiitsia line extremely well,
with an average Rstatistic of 0.98 for both the CoRE and Industrial Lab, anzbase-
case R of 0.94 for both buildings. Comparing the slopes acrosshalldigorithms, we
found a mean change in positioning error vs. signal attéowatf 1.55 ft/dB under si-
multaneous attacks with a minimum of 1.3 ft/dB and maximuni &f ft/dB. For the
single landmark attack, the slope was substantially legg, f/dB, although BN de-
grades consistently less than the other algorithms at @dR.fThe linear fit results are
quite important as it means that no algorithm has a cliff wttee average positioning
error suffers a catastrophic failure under attack. Instgadmains proportional to the
severity of the attack.

Median Mean Error Median Mean Error Median Mean Error

.“<>...
2
Axarene
2

Error (feet)

Error (feet)

Error (feet)
5

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20
Signal attenuation (dB) Signal attenvation (dB) Signal attenuation (d8)

(a) CoRE: all Landmarks (b) CoRE: Landmark 1 (c) CoRE: Landmark 2

Median Mean Error Median Mean Error Median Mean Error

Error (feet)

Error (feet)
]
Error (feet)

0 5 20 % 30 0 5

10 15 25 30 0 5
Signal attenuation (dB)

25 30

10 15 20 10 15 20
Signal atienuation (d8) Signal attenuation (J8)

(d) Industrial: all Landmarks (e) Industrial: Landmark 1 (f) Industrial: Landmark 5

Fig. 5. Median mean error across localization algorithms under attenuation attack

While the median error characterizes the overall responattdoks, it does not address
whether an attacker can cause a few, large errors. We exdrttiseresponse of the
maximum error as a function of the strength of the attackhiosv the 100" percentile



error scales as a function of the change in dB. We note thatctéracterization is
not the same as, nor is directly related to, the Holder meetiibose metrics define the
rates of change between physical and signal space withlo¢hkzation function itself,

while here we characterize the change in the estimator t&rtbe change in signal, i.e.

o — Bll/lls = v

Figure 6 plots the worst-case error for each algorithm asnation of signal dB for
the CoRE building. The figure shows that almost all the respsrare again linear,
with least-squares fits of Rvalues of 0.84 or higher, though SPM does not have a
linear response. The second important point is the algostitesponses vary, falling
into three groups. BN, R1 and R2 are quite poor, with the woese error scaling at
about 4 ft/dB. P1 and P2, are in a second class, scaling & tdsft/dB. The gridded
algorithms, GP and GR, as well as ABP-75 fair better, scalir®yft/dB or less. Finally,
SPM is in a class by itself, with a poor linear fit{Rf 0.61) and the maximum error
topping out at about 85 ft after 15 dB of attack.

Worst-case Error

Error (feet)

25 30

10 15 20
Signal attenuation (dB)

Fig. 6. Maximum error as a function of attack strength for CoRE

Examining the error CDFs and the maximum errors, we can sgentbst of the lo-

calizations move fairly slowly in response to an attack, tadw 1.5 ft/dB. However,

for some of the algorithms, particularly BN, R1 and R2, the part of the error CDF

moves faster, at about 4 ft/dB. What this means is that, folextstew points, an at-

tacker can cause more substantial errors of over 100 ft. Henvat most places in the
building, an attack can only cause errors with much less iz

Figure 5 show that BN is more robust compared to other alyostfor individual land-
mark attacks. Recall BN uses a Monte-Carlo sampling tecten{Gibbs sampling) to
compute the full joint-probability distribution for notgtithe position coordinates, but
also for every node in the Bayesian network. Under a singidrtark attack we found
the network reduces the contribution of network nodes tiredfected by the attacked
landmark to the full joint-probability distribution whilencreasing other landmarks’
contributions. In effect, the network “discounts” the akad landmark’s contribution
to the overall joint-density because the attacked data fl@ahlandmark is highly un-
likely given the training data.

To show this effect we developed our own Gibbs sampler soveatould observe
the relative contributions of each node in the Bayesian oo the final answer.
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Fig. 7. Contribution of each Landmark during sampling in the BN algorithm undenadtion

attacks.
Figure 7 shows the percentage contribution for each lankitoapverall joint-density.

For instance, in CoRE, the contribution of each landmanitstamost uniformly. When
Landmark 1 under attack, the contribution of Landmark 1 dams 0.25 down to 0.15.
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the landmarks.

5.4 Precision Study

In this section, we examine the area-based algorithmsigicgcin response to attacks.
Figure 8 shows the CDF of the precision (i.e. size of the retdrarea) for different
area-based algorithms under attack for all the landmark®IRE and Industrial Lab.



We found the algorithms did not become less precise in resptmattacks, but rather,
the algorithms tended to shift and shrink the returned aféigsre 8(a) shows a small
average shrinkage for SPM in the CoRE building, and likew&b) shows a similar
effect for BN.

ABP-75 had the most dramatic effect. Figures 8(c) and 8(diyvshe precision versus
the attack strength for both buildings. The shrinkages ait gubstantial. We found
that, under attack, the probability densities of the tilesak to small values that were
located on a few tiles— reflecting the fact that an attack esitisere not to be a likely
position to localize a node. We also found that this effetd far amplification attacks,

as is shown in Figure 8(d). The shrinking precision behamiay be useful for attack
detection, although a full characterization of how thiseffoccurs remains for future
work.
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Fig. 9. Precision vs. perturbation distance under attenuation attack

Examining this effect further, Figure 9 presents the pieniys. the attack strength,
with a least squares line fit. Figure 9(a) shows the effectnndteacking all landmarks
on the CoRE building. Figure 9(b) shows a downward trenduth weaker, when at-
tacking one landmark. We observed similar results for tideistrial Lab. We see mostly
linear changes in precision in response to attacks, altheuth great differences be-
tween the algorithms. The figures show that the decreaseaismn as function of dB
is particularly strong for ABP-75.

6 Discussion about Holder Metrics

In the previous section we examined the experimental igsarid looked at the perfor-
mance of several localization algorithms in terms of errat precision. We now focus
on the performance of these localization algorithms in teofithe Holder metrics. The
Holder metrics measure the variability of treturnedanswer in response to changes in
the signal strength vectors.

We first discuss the practical aspects of measufngnd H for different algorithms.
In Section 4, the Holder parameters are defined by calcglatie maximum and av-
erage over the entire-dimensional signal strength space. In practice, it is ssae/
to perform a sampling technique to measéifeand /. Additionally, as noted earlier,



the definition of H and H are only suitable for (Holder) continuous functio@s;,,.
In reality, several localization algorithms, such as RADAIRe not continuous and in-
volve the tessellation of the signal strength space int@ior cellsV;, and thus only
a discrete set of localization results are produced (im&gde anderG,;,). Hence, for
anys € V; we haveGg(s) = (z;,y;). Unfortunately, for neighboring Voronoi cells,
we may takes € V; andv € V; such that they are arbitrarily close (ijgs — v|| — 0),
while ||Gr(s) — Gr(v)|| # 0. In such a case, the formal calculation Bfand H is
not possible. However, for our purposes, we are only intedeis measuring the notion
of adjacency of Voronoi cells in signal space yielditlgselocalization results. Thus,
our calculation off andH is only performed over the centroids of the various Voronoi
cells for localization algorithms that tessellate of sigsteength space.

Table 2. Analysis of (worst-case}l and (average-casé}

[Algorithms [CoRE: H[LAB: H|CoRE: H|LAB: H|
Area-Baseq
SPM | 23.7646]11.0659 1.8856 | 2.3548
ABP-75 | 20.0347|23.0652 1.8548 | 2.3424
BN 31.7324|14.9168 2.0595 | 2.5873

Point-Base
R1 36.2400 | 20.7846] 1.9750 | 2.3677
R2 19.8586| 8.7313| 1.9138 | 2.3058
GR 35.9880 | 20.6886| 1.9691 | 2.3628
P1 20.8832|20.7846| 1.9793 | 2.3683
P2 19.8586| 8.7313| 1.9178 | 2.3058
GP 21.8303|20.6886| 1.9649 | 2.2882

The Hélder parameters for the different localization aipons are presented in Table
2. Examining these results, there are several importamreatons that can be made.
First, if we examine the results féf we see that, for each building, all of the algorithms
have very similarH values. Hence, we may conclude that the average variability
the returned localization result to a change in the sigmehgth vector is roughly the
same for all algorithms. This is an important result as it nseaegardless of which RF
fingerprinting localization system we deploy, the averaggesptibility of the returned
results to an attack is essentially identical.

However, if we examine the results féf, which reflects the worst-case susceptibil-
ity, then we see that there are some differences acrossgbethins. First, comparing
H and H for both point-based and area-based algorithms, we se¢hthatorst-case
variability can be much larger than the average variab#itiditionally, the point-based
methods appear to cluster. Notably, RADAR (R1) and GriddadaR (GR) have similar
performance across both CoRE and the Industrial Lab, whitéeaged RADAR (R2)
and averaged Highest Probability (P2) have similar peréorte across both buildings.
A very interesting phenomena is observed by looking at tgerdhms that returned
an average of likely locations (R2 and P2). Across both nglsl these algorithms ex-
hibited less variability compared to other algorithms.sTisito be expected as averag-
ing is a smoothing operation, which reduces variations iargtion. This observation
suggests that R2 and P2 are more robust from a worst-casegairew than other
point-based algorithms.



7 Conclusion

In this paper, we analyzed the robustness of RF-fingerpgrticalization algorithms
to attacks that target signal strength measurements. Weefiasnined the feasibility
of conducting amplification and attenuation attacks, argkoked a linear dependency
between non-attacked signal strength and attacked siggaatsh readings for different
barriers placed between the transmitter and a landmarkvesciVe provided a set of
performance metrics for quantifying the effectiveness mofattenuation/amplification
attack. Our metrics included localization error, the psiEgi of area-based algorithms,
and a new family of metrics, called Holder metrics, that difgthe variability of the re-
turned answer versus change in the signal strength vetersonducted a trace-driven
evaluation of several point-based and area-based lotalizagorithms where the lin-
ear attack model was applied to data measured in two differffice buildings. We
found that the localization error scaled similarly for dfj@rithms under attack. Further,
we found that, when attacked, area-based algorithms didxpErience a degradation
in precision although they experienced degradation inraoguWe then examined the
variability of the localization results under attack by mang the Hélder metrics. We
found that all algorithms had similar average variabilityt those methods returned the
average of a set of most likely positions exhibited lessalality. This result suggests
that the average susceptibility of the returned resultsitateack is essentially identical
across point-based and area-based algorithms, thouglglit iné desirable to employ
either area-based methods or point-based methods thatmeaf/eraging in order to
lessen the worst-case effect of a potential attack.
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